Parametric curves and their tangents

Answers included

Conceptual questions

Question 1. In lecture, you saw that $x=\cos t, y=\sin t$ parametrizes a circle. Where is the center of the circle, and what is the circle's radius? What point on the circle corresponds to $t=0$? As t increases, is the circle traced clockwise or counterclockwise? How long does it take to trace out the circle exactly once?

Then answer the same questions for these other circles:

- $x=3 \sin t, y=3 \cos t$
- $x=\cos (2 t), y=\sin (2 t)$
- $x=4+\cos t, y=-3+\sin t$

Question 2. Beware: the following parametric curves are not circles. (What are they?)

- $x=2 \cos t, y=5 \sin t$
- $x=\sin t, y=\cos (2 t)$. (Hint: use the double angle formula to find a Cartesian equation.)

Question 3. Suppose that a parametric curve $x=f(t), y=$ $g(t)$ satisfies $g^{\prime}(3)=0$. What can you conclude (if anything) about the tangent to the curve at $t=3$?

Computations

Problem 1. This is a further exploration of some ideas from Question 1, so that you can better understand how to transform shapes algebraically. Let C be the curve described by the equation $x^{2}+y^{2}=5$. If we take C and
(1) shift it by 2 units in the positive y direction (i.e. upwards),
(2) and then stretch it by a factor of 3 in the x direction (i.e. horizontally),
what Cartesian equation describes the resulting shape?
Next, come up with a parametrization $x=f(t), y=g(t)$ for the starting shape C, and then a parametrization for the shape obtained after applying the transformations.
Problem 2. Find a Cartesian equation for the parametric curve $x=t^{3}+t, y=t^{2}+2$. Hint: compute x^{2}.
Problem 3. There are two points on the curve

$$
x=2 t^{2}, y=t-t^{2},-\infty<t<\infty
$$

where the tangent line passes through the point $(10,-2)$. Find these two points.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1.

- Center $(0,0)$, radius 1 , start at $(1,0)$, complete one CCW revolution in 2π time.
- Center $(0,0)$, radius 3 , start at $(0,3)$, complete one CW revolution in 2π time.
- Center $(0,0)$, radius 1 , start at $(1,0)$, complete one CCW revolution in π time.
- Center $(4,-3)$, radius 1 , start at $(5,-3)$, complete one CCW revolution in 2π time.

Question 2.

- This is an ellipse. I drew a picture of it in discussion.
- By eliminating the parameter t using the double angle formula, one finds the Cartesian equation $y=1-2 x^{2}$. But beware: this parametric curve is not the entire parabola described by the Cartesian equation: only the portion between the points $(-1,-1)$ and $(1,-1)$.
Question 3. From the information given, you cannot conclude anything about the tangent line in question. If you moreover knew that $f^{\prime}(3) \neq 0$, then it would follow that the tangent line is horizontal. But without that knowledge, the slope of the tangent line could be anything. (In the event that both $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ are zero, you need to compute a limit to find the slope of the tangent line.)

Answers to computations

Problem 1. We did this one together in discussion. The summary is that, to shift a shape by 2 units in the positive y direction, replace y by $y-2$. Stretching by a factor of 3 in the x direction is achieved by replacing x by $x / 3$.
Problem 2. Following the hint: we get $x^{2}=t^{6}+2 t^{4}+t^{2}$. Since $t^{2}=y-2$, we can eliminate t and obtain the equation

$$
x^{2}=(y-2)^{3}+2(y-2)^{2}+(y-2) .
$$

Problem 3. The tangent line at the time t has slope given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 t}{4 t}
$$

The point corresponding to the time t on the curve is none other than $\left(2 t^{2}, t-t^{2}\right)$, so by the point-slope formula we have

$$
y-\left(t-t^{2}\right)=\frac{1-2 t}{4 t}\left(x-2 t^{2}\right)
$$

as the equation of the tangent line at time t for all times $t \neq 0$. When $t=0$ we have a vertical tangent and I leave it to you to check that it does not pass through the point $(10,-2)$.

The equation we need to solve is

$$
-2-\left(t-t^{2}\right)=\frac{1-2 t}{4 t}\left(10-2 t^{2}\right)
$$

because we want to find the times t for which the tangent line passes through the point $(10,-2)$. This simplifies into a quadratic equation in t with solutions $t=1,5$, corresponding to the points $(2,0)$ and $(50,-20)$ respectively.

